Hospital-acquired Legionnaires’ disease occurs when patients are exposed to Legionella-contaminated water from a hospital water distribution system. Disinfection of hospital water systems has halted outbreaks and prevented future cases. A number of disinfection methods have been used with varying success such that new approaches are needed.

Monochloramine has been used for municipal water treatment for many years and hospitals in these municipalities reported fewer cases of Legionnaires’ disease.\(^1,2\) \(^3\) This made monochloramine an attractive disinfection option for hospitals, however the ability for on-site generation was not available until recently.

Marchesi et al. evaluated monochloramine injection in an Italian hospital and demonstrated a significant reduction in Legionella positivity.\(^4\) We report the first U.S. application of monochloramine in a hospital hot water system for Legionella disinfection.

The objectives of this study were:

- To evaluate the ability of monochloramine injected into a building hot water system to reduce Legionella colonization
- To identify the effects of monochloramine on water chemistry
- To identify key monochloramine system operation and maintenance requirements

Methods

Location: A 12 story tertiary care hospital in Pittsburgh, PA, USA. Legionella pneumophila serogroup 1 was detected in this hospital’s hot water system in the early 1990s, which prompted the installation of a copper-silver ionization system. After a building construction/renovation project in 2010, Legionella colonization was found to increase dramatically in this building despite disinfection.

The monochloramine injection system was provided by Sanipur (Brescia, Italy) (Figure 1) and installed on the hot water system of this hospital. The system generated monochloramine by combining two reagents: 1) a stabilized chlorine precursor (Enoxin) and 2) a buffered ammonium salt solution (Zebron). These chemicals were injected into a pre-dilution loop that supplied monochloraminated water to the building circulating hot water system. Hot water Oxidation-Reduction Potential (ORP) and cold water flow feeding the hot water system were continuously monitored for control of monochloramine injection.

Samples from 27 distal outlets, the hot water return line, incoming cold water, and each of the two hot water tanks (before and after flushing) were cultured for legionella. Pseudomonas aeruginosa, Stenotrophomonas maltophilia, Acinetobacter spp., nitrifying bacteria, Mycobacterium spp., and Heterotrophic Plate Count (HPC) bacteria once per month for the first six months of the study and every two months for the remainder of the study. For Legionella, Acinetobacter, Stenotrophomonas, and Mycobacterium water was plated directly and after 100 mL was filtered and resuspended in 10 mL of sample. Pseudomonas and HPC were cultured according to Standard Methods.\(^5\)

Copper, silver, lead, monochloramine, total chlorine, free chlorine, nitrate, nitrite, total ammonia, pH, and hot water temperature were also measured throughout the study at least once per sampling month.

Results

Table 1. Microbiological Results: No. Positive/No. Tested (Avg. CFU/mL).

<table>
<thead>
<tr>
<th>Microorganism</th>
<th>Baseline</th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
<th>M4</th>
<th>M5</th>
<th>M6</th>
<th>M7</th>
<th>M8</th>
<th>M9</th>
<th>M10</th>
<th>M12</th>
<th>M14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Legionella spp.*</td>
<td>14/110</td>
<td>3/77</td>
<td>1/17</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa**</td>
<td>2/110</td>
<td>0/77</td>
</tr>
<tr>
<td>Stenotrophomonas maltophilia</td>
<td>1/110</td>
<td>0/77</td>
</tr>
<tr>
<td>Acinetobacter spp.</td>
<td>0/110</td>
<td>0/77</td>
</tr>
<tr>
<td>Mycobacterium spp.</td>
<td>1/127</td>
<td>6/77</td>
<td>1/14</td>
</tr>
</tbody>
</table>

* Legionella detection limit = 3-10 CFU/mL
** Concentration units: CFU/500mL

The other microbes tested (P. aeruginosa, S. maltophilia, Acinetobacter spp., and Mycobacterium spp.) did not exhibit significant changes in percent positivity or average concentration following treatment with monochloramine.

Mean values for the other chemicals measured were as follows: copper (0.22 mg/L), silver (0.044 mg/L), lead (<0.0025 mg/L), total chlorine (2.17 mg/L), free chlorine (0.17 mg/L), nitrate (2.38 mg/L), nitrite (0.005 mg/L), total ammonia (0.62 mg/L), pH (6.2), and the average hot water temperature was 112.8°F.

Conclusions

- Application of monochloramine to the hot water system of a hospital was shown to be effective in controlling Legionella colonization and prevented cases of hospital-acquired Legionnaires’ disease. The study is ongoing.
- Regular monitoring of monochloramine, ammonia, and Legionella must be performed to ensure optimal operation and performance.
- Unlike municipal application of monochloramine to cold water, we did not observe increases in other bacterial populations or nitrate/nitrite.
- Monochloramine is a promising disinfection method for Legionella control in hospital water systems and should be evaluated in controlled studies in other healthcare institutions.

References