Monochloramine Disinfection of a Hospital Water System for Preventing Hospital-Acquired Legionnaires’ Disease: Lessons Learned from a 1.5 Year Study

Scott DUDA1, Sheena KANDIAH2, Janet E. STOUT1,3, Juliane L. BARON1,4, Mohamed YASSIN3, Marie FABRIZIO2, Juliet FERRelli1, Rahman HARIRI1, John GOEPFERT1, James BOND2, Joseph HANNIGAN2,5, and Denzil ROGERS2

1Special Pathogens Laboratory, Pittsburgh, PA, USA. 2UPMC Mercy Hospital, Pittsburgh, PA, USA. 3Department of Civil and Environmental Engineering, University of Pittsburgh, Swanson School of Engineering, Pittsburgh, PA, USA. 4Department of Infectious Diseases and Microbiology, University of Pittsburgh, Graduate School of Public Health, Pittsburgh, PA, USA. 5Klenozid Inc., Conshohocken, PA, USA. E-mail: JulianneLBaron@gmail.com

Background & Objectives

Hospital-acquired Legionnaires’ disease occurs when patients are exposed to Legionella-contaminated water from a hospital water distribution system. Disinfection of hospital water systems has halted outbreaks and prevented future cases. A number of disinfection methods have been used with varying success such that new approaches are needed.

Monochloramine has been used for municipal water treatment for many years and in hospitals in these municipalities reported fewer cases of Legionnaires’ disease.1,2,3. This made monochloramine an attractive disinfection option for hospitals, however the ability for on-site generation was not available until recently.

Marchesi et al. evaluated monochloramine injection in an Italian hospital and demonstrated a significant reduction in Legionella positivity.4 We report the first U.S. application of monochloramine in a hospital hot water system for Legionella disinfection.

The objectives of this study were:

- To evaluate the ability of monochloramine injected into a building hot water system to reduce Legionella colonization
- To identify the effects of monochloramine on water chemistry
- To identify key monochloramine system operation and maintenance requirements

Methods

Location: A 12 story tertiary care hospital in Pittsburgh, PA, USA. Legionella pneumophila serogroup 1 was detected in this hospital’s hot water system in the early 1990s, which prompted the installation of a copper-silver ionization system. After a building construction/renovation project in 2010, Legionella colonization was found to increase dramatically in this building despite disinfection.

The monochloramine injection system was provided by Sanipur (Brescia, Italy) (Figure 1) and installed on the hot water system of this hospital. The system generated monochloramine by combining two reagents: 1) a stabilized chlorine precursor (Enoxin) and 2) a buffered ammonium salt solution (Zebion). These chemicals were injected into a pre-dilution loop that supplied monochloraminated water to the building circulating hot water system. Hot water Oxidation-Reduction Potential (ORP) and cold water flow feeding the hot water system were continuously monitored for control of monochloramine injection.

Samples from 27 distal outlets, the hot water return line, incoming cold water, and each of the two hot water tanks (before and after flushing) were cultured for Legionella, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, Acinetobacter spp., nitifying bacteria, Mycobacterium spp., and Heterotrophic Plate Count (HPC) bacteria once per month for the first six months of the study and every two months for the remainder of the study. For Legionella, Acinetobacter, Stenotrophomonas, and Mycobacterium water was plated directly and after 100 mL was filtered and resuspended in 10 mL of sample. Pseudomonas and HPC were cultured according to Standard Methods3.

Copper, silver, lead, monochloramine, total chlorine, free chlorine, nitrate, nitrite, total ammonia, pH, and hot water temperature were also measured throughout the study at least once per sampling month.

Results

The percentage of positive distal site decreases from an average baseline of 53% to 6% after one week and an average of 10% during the 14 months of system operation (Figure 2).

Legionella positivity increased during months 10 and 12 to 26% and 33%, respectively (Figure 2). This was preceded by degradation of the stabilized chlorine solution which resulted in suboptimal monochloramine generation and increased ammonia in the hot water system. Once corrected positivity decreased to 4%.

Weekly monochloramine concentrations averaged between 1.56 and 3.03 mg/L as Cl2 with an overall average of 2.22 mg/L as Cl2. HPC concentrations decreased significantly, by approximately 1 log CFU/mL (p < 0.05) (Table 1).

Conclusions

- Application of monochloramine to the hot water system of a hospital was shown to be effective in controlling Legionella colonization and prevented cases of hospital-acquired Legionnaires’ disease. The study is ongoing.
- Regular monitoring of monochloramine, ammonia, and Legionella must be performed to ensure optimal operation and performance.
- Unlike municipal application of monochloramine to cold water, we did not observe increases in other bacterial populations or nitrate/nitrite.
- Monochloramine is a promising disinfection method for Legionella control in hospital water systems and should be evaluated in controlled studies in other healthcare institutions.

Table 1. Microbiological Results: No. Positive/No. Tested (Avg. CFU/mL)

<table>
<thead>
<tr>
<th>Microorganism</th>
<th>Distal Samples</th>
<th>Baseline</th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
<th>M4</th>
<th>M5</th>
<th>M6</th>
<th>M7</th>
<th>M8</th>
<th>M9</th>
<th>M10</th>
<th>M11</th>
<th>M12</th>
<th>M13</th>
<th>M14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Legionella spp.</td>
<td>1/4 (100)</td>
<td>3/27 (100)</td>
<td>2/27 (100)</td>
<td>1/27 (100)</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa**</td>
<td>2/3 (100)</td>
<td>0/27 (0)</td>
</tr>
<tr>
<td>Stenotrophomonas maltophilia</td>
<td>2/5 (100)</td>
<td>0/27 (0)</td>
</tr>
<tr>
<td>Acinetobacter spp.</td>
<td>2/10 (20)</td>
<td>0/10 (0)</td>
</tr>
<tr>
<td>Mycobacterium spp.</td>
<td>0/10 (0)</td>
</tr>
<tr>
<td>HPC</td>
<td>11/120 (9.17)</td>
<td>7/120 (5.83)</td>
<td>4/120 (3.33)</td>
<td>2/120 (1.67)</td>
</tr>
</tbody>
</table>

The other microbes tested (P. aeruginosa, S. maltophilia, Acinetobacter spp., and Mycobacterium spp.) did not exhibit significant changes in percent positivity or average concentration following treatment with monochloramine.

References