Use of Pyrosequencing to Determine the Effects of Monochloramine Treatment on *Legionella* and Associated Bacterial Populations in a Hospital Hot Water System

Julianne L. BARON1,2, J. Kirk HARRIS3, Eric HOLINGER4, Scott DUDA4, Norman R. PACE4, and Janet E. STOUT1,5

1Department of Infectious Diseases and Microbiology, University of Pittsburgh, Graduate School of Public Health, Pittsburgh, PA, USA, 2Special Pathogens Laboratory, Pittsburgh, PA, USA, 3Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA, 4Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA, 5Department of Civil and Environmental Engineering, University of Pittsburgh, Swanson School of Engineering, Pittsburgh, PA, USA. E-mail: JulianneLBaron@gmail.com

Background

Microbial contamination of a hospital’s water system can be the source of infection with waterborne pathogens such as *Legionella*. Prevention of this mode of transmission can be accomplished by disinfection of the hospital water distribution system. Water treatment with monochloramine is a relatively new strategy for water disinfection of hospital water systems and few studies have evaluated its long-term effects1,2. The changes in microbial populations in a hospital water system following treatment with monochloramine remains largely unknown.

Next generation sequencing technologies have been previously implemented in characterizing the microbial populations in biofilms, water, and aerosols of both water distribution systems and hospitals. Prior studies of monochloramine addition to biofilms3 and a municipal water system4 have found strong selective pressures to be exerted by this disinfectant.

Our study is the first to assess the changes in *Legionella* and microbial flora due to chloramination in a hospital’s hot water system using next generation sequencing.

Objectives

To characterize the selective pressures of monochloramine treatment on hot water microbial composition using next generation sequencing.

To assess the risks and benefits of this disinfection strategy based upon what pathogenic organisms may be resistant.

Methods

This study was conducted in a hospital complex in Pittsburgh, PA. The complex consists of a 12 story, 495 bed tertiary care hospital and an 11 story administrative building. The hospital’s hot water was treated using on-site generation of monochloramine (Sanipur, Italy) and these hot water samples are designated as “treated”. The administrative building acted as a control because it received no supplemental water treatment and these water samples are designated as “control”.

Hot water samples were collected from 6 faucets and the hot water tank from each building monthly for 3 months. DNA was extracted using a bead-beating, phenol-chloroform extraction as described previously4. PCR was performed using universal 16S ribosomal DNA primers 515F and 1387R5. Sequencing was performed using the Roche 454 FLX platform per manufacturer’s instructions.

The Ribosomal Database Project Classifier software was used to make taxonomic assignments4. A BLAST database containing bacterial isolates identified in the Silva ARB database (version 104) was used to assign species names to nearly identical sequences6. Explicit was used for microbial community analyses and to identify specific bacteria that were differentially present between groups.

Results

Community composition. Treatment of the hospital hot water with monochloramine dramatically reduced the presence of *Legionella* and produced a starkly different microbial assemblage than in the untreated control water (Figure 1). Bacteria from the order Sphinigomona and Limnohabitans dominated in the treated water while *Flexibacter* and the family Planctomycetaceae predominated in the control samples (Figure 1).

The bacteria from the control water were more diverse with the top ten taxa only accounting for approximately 35-45% relative abundance by month (Figure 1). During the month of July there was an influx of *Legionella* into the monochloramine treated sample as well as slightly in the control (Figure 1).

Community dissimilarity. The bacterial communities found in monochloraminated treated and control samples were found to be very dissimilar (Figure 2). Pairwise comparisons between treated and untreated control samples pooled by month and by individual sample showed the most dissimilarity, with a Morisita-Horn Index below 0.09 (Fig. 2).

Conclusion

There was almost no overlap in the bacterial taxa present in the treated and control waters. We found this difference to be statistically significant and due to the monochloramine treatment. There was also a reduction in bacterial diversity in monochloraminated treated communities. This may have led to the relative ease for *Legionella* to recolonize the system in July once the disinfectant was not being correctly formed due to degradation of the chlorine.

We did not find an increase in *Mycobacterium* species or nitrifying bacteria in the chloraminated water as some studies have found in municipal water systems.

This study shows a strong reduction in *Legionella* presence and a lack of many issues with chloramination found in municipal water supplies. As with any disinfection system it is important to regularly monitor levels of chemical components and the presence of opportunistic pathogens. Next generation sequencing may be beneficial to this end as it becomes more affordable and faster to perform.

References